83. Hierarchically Structured Nanocomposites via Mixed-Graft Block Copolymer Templating: Achieving Controlled Nanostructure and Functionality
Xue, Y.; Song, Q.; Liu, Y.; Smith, D.; Li, W.*; Zhong, M.* (equal contribution)
 
82. Molecular Design of Functional Polymers for Silica Scale Inhibition
Kaneda, M.; Dong, D.; Chen, Y.; Zhang, X.; Xue, Y. ; Bryantsev, V.*; Elimelech, M.*; Zhong, M.* (equal contribution)
 
81. Tailoring Thermoresponsive Polymer Architecture to Enhance Antifouling and Fouling Reversibility of Membranes
Jeon, I.; Lee, J.; Zhong, M.*; Kim, J. H.* (equal contribution)
Environ. Sci. Technol. 2023, 57, 17610–17619.
 
80. Size-Selective Ionic Crosslinking Provides Stretchable Mixed Ionic­–Electronic Conductors
Lee, J.; Bark, H; Xue, Y.; Lee, P. S.*; Zhong, M.* (equal contribution)
 
79. Hierarchical Self-Assembly of ABC-Type Bottlebrush Copolymers
Song, Q.; Dong, Q.; Liang, R.; Xue, Y.; Zhong, M.*; Li, W.*
Macromolecules 2023, 56, 5470–5481.

 
78. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation
Xue, Y.; Cao, M.; Chen, C.; Zhong, M.* (equal contribution)
 
77. Rare Earth–Cobalt Bimetallic Catalysis Mediates Stereocontrolled Living Radical Polymerization of Acrylamides
Zhang, X.; Lin, F.; Cao, M.; Zhong, M.*
Nature Synth. 2023, 2, 855–863.

Highlights:
Expanding the Potential of Radical PolymerizationYale SEAS News 2023, 05/19.
Porphyrins Pave the Way to Precision Polymers. Kasun Wekasinghe and Aaron J. Teator Nature Synth. 2023, 05/30.
 

76. Emergence of Layered Nanoscale Mesh Networks through Intrinsic Molecular Confinement Self-assembly
Sun, Z.; Liu, R.; Su, T.; Huang, H.; Kawamoto, K.; Liu, B.; Zhong, M.; Alexander-Katz, A.; Ross, C. A.; Johnson, J. A. (equal contribution)
Nature Nanotechnol2023, 18, 273–280.
[ChemRxiv preprint DOI: 10.26434/chemrxiv-2022-m6x53.]

75. Pendant Group Modifications Provide Graft Copolymer Silicones with Exceptionally Broad Thermomechanical Properties
Husted, K. E. L.; Herzog-Arbeitman, A.; Kleinschmidt, D.; Zhang, W.; Sun, Z.; Fielitz, A. J.; Le, A. N.; Zhong, M.; Johnson, J. A.
ACS Cent. Sci. 2023,
9, 36–47.
[Research Square preprint 2022, DOI: 10.21203/rs.3.rs-1115203/v1.]

74. Tuning Charge Density in Tethered Electrolyte Active-Layer Membranes for Enhanced Ion-Ion Selectivity
Porter, C. J.; Wang, L.; Zhong, M.; Elimelech, M.
J. Memb. Sci. 2022, 668, 121214.

73. Rapid Access to Diverse Multicomponent Hierarchical Nanostructures from Mixed-Graft Block Copolymers
Liang, R.; Song, Q.; Li, R.; Le, A. N.; Fu, X.; Xue, Y.; Ji, X.; Li, W.; Zhong, M.*
Angew. Chem. Int. Ed. 2022, 61, e202210067.

72. Hierarchically Engineered Nanostructures from Compositionally Anisotropic Molecular Building Blocks
Liang, R.; Xue, Y.; Fu, X.; Le, A. N.; Osuji, C. O.; Johnson, J. A.*; Li, W.; Zhong, M.* (equal contribution)
Nature Mater. 2022, 21, 1434–1440.
[ChemRxiv preprint DOI: 10.26434/chemrxiv-2022-tn528.]

71. Expanding the Toolbox of Controlled/Living Branching Radical Polymerization through Simulation-Informed Reaction Design
Cao, M.; Liu, Y.; Zhang, X.; Li, F.; Zhong, M.*
Chem 2022, 8, 1460–1475.

Highlights:
Branched Polymers Can Be Very Useful. Now There’s a Better Way to Make Them. Yale SEAS News 2022, 05/13.

70. Chain-Growth Branching Radical Polymerization: An Inibramer Strategy
Cao, M.; Zhong, M.*
Polym. Int. 2022, 71, 501–507.

69. Tethered Electrolyte Active-Layer Membranes
Porter, C. J.; DuChanois, R. M.; MacDonald, E.; Kilpatrick, S.-M.; Zhong, M.*; Elimelech, M.*
J. Memb. Sci. 2022, 642, 120004
.

68. Surface Topography of Poly(ethylene glycol) Shell Nanoparticles Formed from Bottlebrush Polymers Controls Interactions with Proteins and Cells
Grundler, J.; Shin, K.; Suh, H.-W.; Zhong, M.*; Saltzman, W. M.*
ACS Nano 2021, 15, 16118–16129.

67. Photoactive Polyethylenimine-Coated Graphene Oxide Composites for Enhanced Cr(VI) Reduction and Recovery
Kim, C.; An, S.; Lee, J.; Ghosh, A.; Zhong, M.; Fortner, J. D.
ACS Appl. Mater. Interfaces 2021, 13, 28027–28035.


 
66. Random Copolymerization of Macromonomers as a Versatile Strategy to Synthesize Mixed-Graft Block Copolymer
Le, A. N.; Liang, R.; Ji, X.; Fu, X.; Zhong, M.*
J. Polym. Sci. 2021, 59, 2571–2580. (Early Career Investigators Issue)
65. Efficient Room-Temperature Solid-State Lithium Ion Conductors Enabled by Mixed-Graft Block Copolymer Architectures

Ji, X.; Cao, M.; Fu, X.; Liang, R.; Le, A. N.; Zhang, Q.; Zhong, M.*
Giant 20203, 100027.

64. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels
Porter, C. J.; Werber, J. R.; Zhong, M.; Wilson, C. J.; Elimelech, M.
ACS Nano 2020, 14, 10894–10916.

63. Controlled Grafting of Polymer Brush Layers from Porous Cellulosic Membranes
Porter, C. J.; Werber, J. R.; Ritt, C. L.; Guan, Y.; Zhong, M.; Elimelech, M.
J. Memb. Sci. 2020, 579, 117719.

62. Synthesis and Visualization of Molecular Brush-on-Brush Based Hierarchically Branched Structures
Fu, X.; Guo, Z. H.; Le, A. N.; Lei, J.; Zhong, M.*
Polym. Chem. 2020, 11, 270–274. (Emerging Investigators Issue)

61. Scalable Synthesis of Fluorescent Organic Nanodots by Block Copolymer Templating
Cao, S.; Le, A. N.; Chen, A. H.*; Zhong, M.*
J. Polym. Sci. 2020, 58, 30–34. 

60. Synthesis and Self-assembly of Mixed-Graft Block Copolymers
Le, A. N.; Liang, R.; Zhong, M.*
Chem. Eur. J. 2019, 25, 8177–8189.

59. Polyacrylonitrile-Derived Nanostructured Carbon Materials
Kopeć, M.; Lamson, M.; Yuan, R.; Tang, C.; Kruk, M.; Zhong, M.; Matyjaszewski, K.; Kowalewski, T.
Prog. Polym. Sci. 2019, 92, 89–134. 

58. Asymmetric Hydrogel-Composite Membranes with Improved Water Permeability and Self-Healing Property  
Getachew, B. A.; Guo, W.; Zhong, M.; Kim, J. H.
J. Memb. Sci. 2019, 578, 196–202.

57. Site-Specifically Initiated Controlled/Living Branching Radical Polymerization: A Synthetic Route Toward Hierarchically Branched Architectures   
Li, F.; Cao, M.; Feng, Y.; Liang, R.; Fu, X.; Zhong, M.* (equal contribution)
J. Am. Chem. Soc. 2019, 141, 794–799.

56. Janus Graft Block Copolymers: Design of Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties 
Guo, Z.-H.; Le, A. N.; Feng, X.; Choo, Y.; Liu, B.; Wang, D.; Wan, Z.; Gu, Y.; Zhao, J.; Li, V.; Osuji, C.; Johnson, J. A.*; Zhong, M.* (equal contribution)
Angew. Chem. Int. Ed. 2018, 57, 8493–8497. (VIP)

Prior to Yale:

55. Semibatch Monomer Addition as a General Method to Tune and Enhance the Mechanics of Polymer Networks via Loop Defect Control
Gu, Y.; Kawamoto, K.; Zhong, M.; Chen, M.; Hore, M. J. A.; Jordan, A. M.; Korley, L. T. J.; Olsen, B. D.; Johnson, J. A.
Proc. Natl. Acad. Sci. U.S.A. 2017114, 4875–4880. 
Highlights: 
New Strategy Produces Stronger Polymers MIT News 2017, 04/24.

54. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photo-redox Catalysis
Chen, M.; Gu, Y.; Singh, A.; Zhong, M.; Jordan, A. M.; Biswas, S.; Korley, L. T. J.; Balazs, A. C.; Johnson, J. A. (equal contribution)
ACS Cent. Sci. 2017, 3, 124–134.
 
53. Cubosomes from Hierarchical Self-assembly of Poly(ionic liquid) Block Copolymers
He, H.; Rahimi, H.; Zhong, M.; Mourran, A.; Luebke, D.; Nulwala, H. B.; Möller, M.; Matyjaszewski, K.
Nature Commun. 2017, 8, 14057.

 

52. Nitrogen-Doped Nanocarbons Derived from T​etrazine Cross-Linked Poly(4-cyanostyrene)-Silica Hybrids
Lamson, M.; Chen, L.; Zhong, M.; Wu, D.; Matyjaszewski, K.
Macromol. Chem. Phys. 2017, 218, 1600524.

51. Quantifying the Impact of Molecular Defects on Polymer Network Elasticity

Zhong, M.; Wang, R.; Kawamoto, K.; Olsen, B. D.; Johnson, J. A. (equal contribution)
Science 2016, 353, 1264–1268. 


Highlights:
New Theory Overcomes A Longstanding Polymer Problem MIT News 2016, 09/15.
New Theory Overcomes A Longstanding Polymer Problem Chemeurope.com 2016, 09/20.

50. Facile Arm-First Synthesis of Star Block Copolymers via ARGET ATRP with ppm Amounts of Catalyst
Ding, H.; Park, S.; Zhong, M.; Pan, X.; Pietrasik, J.; Bettinger, C. J.; Matyjaszewski, K. (equal contribution)
Macromolecules 2016, 49, 6752–6760.   

49. Polymer Structure-dependent Hierarchy in PolyMOC Gels 
Zhukhovitskiy, A. V.; Zhao, J.; Zhong, M.; Keeler, E. G.; Alt, E. A.; Teichen, P.; Griffin, R. G.; Hore, M. J. A.; Willard, A. P.; Johnson, J. A.
Macromolecules 2016, 49, 6896–6920.

48. Preparation of ZnO Hybrid Nanoparticles by ATRP
Ding, H.; Yan, J.; Wang, Z.; Xie, G.; Mahoney, C.; Ferebee, R.; Zhong, M.; Daniel, W. F. M.; Pietrasik, J.; Sheiko, S. S.; Bettinger, C. J.; Bockstaller, M. R.; Matyjaszewski, M.
Polymer 2016, 107, 492–502. 

47. Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A-branch-B Diblock Macromonomers
Kawamoto, K.; Zhong, M.; Gadelrab, K. R.; Cheng, L.-C.; Ross, C. A.; Alexander-Katz, A.; Johnson, J. A. (equal contribution)
J. Am. Chem. Soc. 2016, 138, 11501–11504. 

46. Block Co-PolyMOCs by Stepwise Self-Assembly
Wang, Y.;  Zhong, M.; Park, J. V.; Zhukhovitskiy, A. V.; Shi, W.; Johnson, J. A.
J. Am. Chem. Soc. 2016, 138, 10708–10715. 


                   

45. IEG Synthesis and Assembly of Uniform Diblock Copolymers
Jiang, Y.; Golder, M. R.; Nguyen, H. V.-T.; Wang, Y.; Zhong, M.; Barnes, J. C.; Ehrlich, D. J. C.; Johnson, J. A.
J. Am. Chem. Soc. 2016, 138, 9369–9372.
    

44. Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications
Chen, M.; Zhong, M.; Johnson, J. A. (equal contribution)
Chem. Rev. 2016, 116, 10167–10211.       

43. Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates
Ding, H.; Zhong, M.; Wu, H.; Park, S.; Mohin, J. W.; Klosterman, L.; Yang, Z.; Yang, H.; Matyjaszewski, K.; Bettinger, C. J. (equal contribution)
ACS Nano 2016, 10, 5991–5998.            

42. Synthesis of Well‐Defined Polyacrylonitrile by ICAR ATRP with Low Concentrations of Catalyst
Lamson, M.; Kopec, M.; Zhong, M.; Ding, H.; Matyjaszewski, K. (equal contribution)
J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 1961–1968. 
                            

41. Highly Branched and Loop-rich Gels via Formation of Metal-organic Cages Linked by Polymers
Zhukhovitskiy, A. V.; Zhong, M.; Keeler, E. G.; Michaelis, V. K.; Sun, J. E.P.; Hore, M. J. A.; Pochan, D. J.; Griffin, R. G.; Willard, A. P.; Johnson, J. A.
Nature Chem. 2016, 8, 33–41.

40. Loops Versus Branch Functionality in Model Click Hydrogels
Kawamoto, K.; Zhong, M.; Wang, R.; Olsen, B. D.; Johnson, J. A.
Macromolecules 2015, 48, 8980–8988.                                     

39. Ionic Liquid Regioisomers: Structure Effect on the Thermal and Physical Properties 
Watkins, J. D.; Roth, E. A.; Lartey, M.; Albenze, E.; Zhong, M.; Luebke, D.; Nulwala, H. B.
New J. Chem. 2015, 39, 1563–1566.

38. Copolymer-Templated Nitrogen-Enriched Nanocarbons as Low Charge-Transfer Resistance and Highly Stable Alternative to Platinum Cathodes in  Dye-Sensitized Solar Cells
Ju, M. J.; Choi, I. T.; Zhong, M.; Lim, K.; Ko, J.; Mohin, J.; Lamson, M.; Kowalewski, T.; Matyjaszewski, K.; Kim, H. K. (equal contribution)
J. Mater. Chem. A 2015, 3, 4413–4419.

37. Crossover Experiments Applied to Network Formation Reactions: Improved Strategies for Counting Elastically Inactive Molecular Defects in PEG Gels and Hyperbranched Polymers
Zhou, H.; Schoen, E.; Wang, M.; Glassman, M.; Liu, J.; Zhong, M.; Díaz Díaz, D.; Olsen, B. D.; Johnson, J. A.
J. Am. Chem. Soc. 2014, 136, 9464–9470.            

36. Atom Transfer Radical Polymerization of Ionic Liquid Monomer: the Influence of Salt/Counterion on Polymerization 
He, H.; Zhong, M.; Luebke, D.; Nulwala, H. B.; Matyjaszewski, K.
J. Polym. Sci. A Polym. Chem. 2014, 52, 2175–2184.    

35. Copolymer Templated Nitrogen-Enriched Nanocarbon Films as Highly Active Electrocatalysts for Oxygen Reduction
Zhong, M.; Jiang, S.; Tang, Y.; Star, A.; Matyjaszewski, K.; Kowalewski, T.
Chem. Sci. 2014, 5, 3315–3319.

34. SARA ATRP or SET-LRP. End of Controversy?
Konkolewicz, K.; Wang, Y.; Krys, P; Zhong, M.; Matyjaszewski, K.
Polym. Chem. 2014, 5, 4396–4417.

33. Atom Transfer Radical Polymerization of Dimethyl(methacryloyloxymethyl) Phosphonate
Mukumoto, K.; Zhong, M.; Matyjaszewski, K. 
Eur. Polym. J. 201456, 11–16.          

32. Biologically-Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks
Ding, H.; Zhong, M.; Kim, Y. J.; Pholpabu, P.; Balasubramanian, A.; Hui, C. M.; He, H.; Yang, H.; Matyjaszewski, K.; Bettinger, C. J.
ACS Nano 2014, 8, 4348–4357.

31. Modular Polymerized Ionic Liquid Block Copolymers Membranes for CO2/N2 Separations 
Adzima, B. J.; Venna, S. R.; Klara, S. S.; He, H.; Zhong, M.; Luebke, D. R.; Mauter, M. S.; Matyjaszewski, K.; Nulwala, H. B.
J. Mater. Chem. A 2014, 2, 7967–7972.

30. Templated Synthesis of Nitrogen-Enriched Nanoporous Carbon Materials from Porogenic Organic Precursors Prepared by ATRP
Wu, D.; Li, Z.; Zhong, M.; Kowalewski, T.; Matyjaszewski, K.
Angew. Chem. Int. Ed. 2014, 53, 3957–3960.
 

29. Multifunctional Photo-Crosslinked Polymeric Ionic Hydrogel Films
He, H.; Adzima, B.; Zhong, M.; Koepsel, R.; Murata, H.; Russell, A.; Luebke, D.; Nulwala, H. B.; Matyjaszewski, K.
Polym. Chem. 2014, 5, 2824–2835.
        
28. Aqueous SARA ATRP. Aqueous RDRP in the Presence of Cu0: The Exceptional Activity of CuI Confirms the SARA ATRP Mechanism
Konkolewicz, D.; Krys, P.; Gois, J. R.; Mendonca, P. V.; Zhong, M.; Wang, Y.; Gennaro, A.; Isse, A.; Fantin, M.; Matyjaszewski, K.
Macromolecules 2014, 47, 560–570.

27. Porous Polymers Prepared via High Internal Phase Emulsion Polymerization for Reversible CO2 Capture
He, H.; Li, W.; Lamson, M.; Zhong, M.; Konkolewicz, D.; Yacatto, K.; Rappold, T.; Sugar, G.; David, N. E.; Damodaran, K.; Natesakhawat, S.; Nulwala, H. B.; Matyjaszewski, K.
Polymer 2014, 55, 385–394.

26. Preparation of Porous Nanocarbons with Tunable Morphology and Pore Size from Copolymer Templated Precursors 
Zhong, M.; Tang, C.; Kim, E. K.; Kruk, M.; Celer, E. B.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T.
Mater. Horiz. 2014, 1, 121–124.

25. Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms
Konkolewicz, D.; Wang, Y.; Zhong, M.; Krys, P.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K.
Macromolecules 2013, 46, 8749–8772.

24. Hyperbranched Polymers with Functionalized Carbon Black: Synthesis, Characterization, and Application in Reversible CO2 Capture
He, H.; Zhong, M.; Konkolewicz, D.; Yacatto, K.; Rappold, T.; Sugar, G.; David, N. E.; Matyjaszewski, K.
J. Mater. Chem. A 2013, 1, 6810–6821.

23. Three-dimensionally Ordered Macroporous Polymer Materials by Colloidal Crystal Templating for Reversible CO2 Capture
He, H.; Zhong, M.; Konkolewicz, D.; Hui, C. M.; Yacatto, K.; Rappold, T.; Sugar, G.; David, N. E.; Matyjaszewski, K.
Adv. Funct. Mater. 2013, 23, 4720–4728.

22. Reversible Deactivation Radical Polymerization in the Presence of Cu0: Kinetic Simulation 
Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K.
Macromolecules 2013, 46, 3816–3827.

21. Reversible Deactivation Radical Polymerization in the Presence of Cu0: Activation of Cu0
Peng, C.; Zhong, M.; Zhu, W.; Zhang, Y.; Wang, Y.; Konkolewicz, D.; Tonge, M.; Matyjaszewski, K.
Macromolecules 2013, 46, 3803–3815.

20. Reversible Deactivation Radical Polymerization in the Presence of Cu0: Comproportionation and Disproportionation
Wang, Y.; Zhong, M.; Zhu, W.; Peng, C.; Zhang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K.
Macromolecules 2013, 46, 3793–3802.

19. Improving Livingness of ATRP by Reducing Cu Catalyst Concentration 
Wang, Y.; Soerensen, N.; Zhong, M.; Schroeder, H.; Buback, M.; Matyjaszewski, K.
Macromolecules 2013, 46, 683–691.

18. Reversible CO2 Capture with Porous Polymers Using the Humidity Swing
He, H.; Li, W.; Zhong, M.; Konkolewicz, D.; Wu, D.; Yaccato, K.; Rappold, T.; Sugar, G.; David, N. E.; Matyjaszewski, K.
Energy Environ. Sci. 2013, 6, 488–493.
       

17. A Simple and Universal Gel Permeation Chromatography (GPC) Technique for Precise Molecular Weight Characterization of Well-Defined Poly(ionic liquid)s 
He, H.; Zhong, M.; Adzima, B.; Luebke, D.; Nulwala, H. B.; Matyjaszewski, K.
J. Am. Chem. Soc. 2013, 135, 4227–4230.

16. Copolymer-Templated Nitrogen-Enriched Porous Nanocarbons for CO2 Capture 
Zhong, M.; Natesakhawat, S.; Baltrus, J.; Luebke, D. R.; Nulwala, H. B.; Matyjaszewski, K.; Kowalewski, T.
Chem. Commun. 2012, 48, 11516–11518.

15. Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer 
Zhong, M.; Kim, E. K.; McGann, J. P.; Chun, S. E.; Whitacre, J. F.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. (equal contribution)
J. Am. Chem. Soc. 2012, 134, 14846–14857.
   

14. Tuning Dispersity in Diblock Copolymers using ARGET ATRP
Plichta, A.; Zhong, M.; Li, W.; Elsen, A. M.; Matyjaszewski, K.
Macromol. Chem. Phys. 2012, 213, 2659–2668.

13. Modification of the Surfaces of Silicon Wafers with Temperature-Responsive Cross-Linkable Poly[oligo(ethylene oxide) methacrylate]-Based Star Polymers 
Park, S.; Zhong, M.; Lee, T.; Paik, H.; Matyjaszewski, K.
ACS Appl. Mater. Interfaces 2012, 4, 5949–5955.

12. Halogen Conservation in Atom Transfer Radical Polymerization
Wang, Y.; Zhong, M.; Zhang, Y.; Magenau, A. J. D.; Matyjaszewski, K.
Macromolecules 2012, 45, 8929–8932. 

11. Linear Gradient Quality of ATRP Copolymers 
Van Steenberge, P. H. M.; D’hooge, D. R.; Wang, Y.; Zhong, M.; Reyniers, M.; Konkolewicz, D.; Matyjaszewski, K.; Marin G. B.
Macromolecules 2012, 45, 8519–8531.

10. Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance 
McGann, J. P.; Zhong, M.; Kim, E. K.; Natesakhawat, S.; Jaroniec, M.; Whitacre, J. F.; Matyjaszewski, K.; Kowalewski, T.
Macromol. Chem. Phys. 2012, 213, 1078–1090.

9. ATRP of Methyl Acrylate in the Presence of Metallic Copper: Effect of Ligand Structure on Reaction Kinetics
Zhang, Y.; Wang, Y.; Peng, C.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K.
Macromolecules 2012, 45, 78–86.

8. Effect of Block Molecular Weight Distribution on the Structure Formation in Block Copolymer/Homopolymer Blends
Listak, J.; Jia, X.; Plichta, A.; Zhong, M.; Matyjaszewski, K., Bockstaller, M. R.
J. Polym. Sci. Part B: Polym. Phys. 2012, 50, 106–116.

7. Nanoporous Polystyrene and Carbon Materials with Core-Shell Nanosphere-Interconnected Network Structure
Wu, D.; Hui, C. M.; Dong, H.; Pietrasik, J.; Ryu, H. J.; Li, Z.; Zhong, M.; He, H.; Kim, E. K.; Jaroniec, M.; Kowalewski, T.; Matyjaszewski, K.
Macromolecules 2011, 44, 5846–5849.

6. Atom Transfer Radical Copolymerization of Monomer and Cross-Linker under Highly Dilute Conditions 
Li, W.; Yoon, J. A.; Zhong, M.; Matyjaszewski, K.
Macromolecules 2011, 44, 3270–3275.

5. How Fast Can a CRP Be Conducted with Preserved Chain End Functionality?
Zhong, M.; Matyjaszewski, K.
Macromolecules 2011, 44, 2668–2677. 

4. Novel Nanoporous Carbons from Well-Defined Poly(styrene-co-acrylonitrile)-Grafted Silica Nanoparticles
Wu, D.; Dong, H.; Pietrasik, J.; Kim, E. K.; Hui, C. M.; Zhong, M.; Jaroniec, M.; Kowalewski, T.; Matyjaszewski, K.
Chem. Mater. 2011, 23, 2024–2026.
 

3. Clickable Stars by Combination of AROP and Aqueous AGET ATRP
Zhu, W.; Zhong, M.; Li, W.; Dong, H.; Matyjaszewski, K. 
Macromolecules 2011, 44, 1920–1926. 

2. Synthesis of Binary Polymer Brushes via Two-Step Reverse Atom Transfer Radical Polymerization
Ye, P.; Dong, H.; Zhong, M.; Matyjaszewski, K.
Macromolecules 2011, 44, 2253–2260.

1. Superhydrophilic Surfaces via Polymer-SiO2 Nanocomposites
Dong, H.; Ye, P.; Zhong, M.; Pietrasik, J.; Drumright, R.; Matyjaszewski, K.
Langmuir 2010, 26, 15567–15573.